/ 06 07 16 0 v 2 6 M ar 2 00 7 Arithmetic on a Distributed - Memory Quantum

نویسنده

  • KOHEI M. ITOH
چکیده

We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed remotely, through “teleported gates” on entangled pairs of qubits (telegate), versus exchanging the relevant qubits via quantum teleportation, then executing the algorithm using local gates (teledata), is examined. We show that the teledata approach performs better, and that carry-ripple adders perform well when the teleportation block is decomposed so that the key quantum operations can be parallelized. A node size of only a few logical qubits performs adequately provided that the nodes have two transceiver qubits. A linear network topology performs acceptably for a broad range of system sizes and performance parameters. We therefore recommend pursuing small, high-I/O bandwidth nodes and a simple network. Such a machine will run Shor’s algorithm for factoring large numbers efficiently.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q ua nt - p h / 06 07 16 0 v 1 24 J ul 2 00 6 Arithmetic on a Distributed - Memory Quantum

We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed remotely, through “teleported gates” on entangled pairs of qubits (telegate), versus exchanging the relevant qubits via quantum teleportation, then e...

متن کامل

ar X iv : h ep - t h / 06 03 15 5 v 1 2 0 M ar 2 00 6 Quantum Field Theory : Where We Are

We comment on the present status, the concepts and their limitations, and the successes and open problems of the various approaches to a relativistic quantum theory of elementary particles, with a hindsight to questions concerning quantum gravity and string theory.

متن کامل

ar X iv : q ua nt - p h / 06 11 18 7 v 1 1 7 N ov 2 00 6 Philosophical Aspects of Quantum Information Theory

2 First steps with quantum information 3 2.1 Bits and qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 The no-cloning theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Quantum cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 Key Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Entanglement-as...

متن کامل

ar X iv : 0 80 5 . 25 68 v 1 [ m at h . G M ] 1 6 M ay 2 00 8 AMBIGUITY THEORY , OLD AND NEW

This is a introductory survey of some recent developments of “Galois ideas” in Arithmetic, Complex Analysis, Transcendental Number Theory and Quantum Field Theory, and of some of their interrelations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007